Publications

Griffiths effects and slow dynamics in nearly many-body localized systems
Gopalakrishnan, Sarang, Agarwal, Kartiek, Demler, Eugene A., Huse, David A. and Knap, Michael
Phys. Rev. B , Volume 93(134206)
April 2016

Abstract: The low-frequency response of systems near a many-body localization transition can be dominated by rare regions that are locally critical or “in the other phase.” It is known that in one dimension, these rare regions can cause the dc conductivity and diffusion constant to vanish even inside the delocalized thermal phase. Here, we present a general analysis of such Griffiths effects in the thermal phase near the many-body localization transition: we consider both one-dimensional and higher-dimensional systems, subject to quenched randomness, and discuss both linear response (including the frequency- and wave-vector-dependent conductivity) and more general dynamics. In all the regimes we consider, we identify observables that are dominated by rare-region effects. In some cases (one-dimensional systems and Floquet systems with no extensive conserved quantities), essentially all long-time local observables are dominated by rare-region effects; in others, generic observables are instead dominated by hydrodynamic long-time tails throughout the thermal phase, and one must look at specific probes, such as spin echo, to see Griffiths behavior.

Quantum Phase Transition and Protected Ideal Transport in a Kondo Chain
Tsvelik, A. M. and Yevtushenko, O. M.
PRL , Volume 115(216402)
November 2015

Abstract: We study the low energy physics of a Kondo chain where electrons from a one-dimensional band interact with magnetic moments via an anisotropic exchange interaction. It is demonstrated that the anisotropy gives rise to two different phases which are separated by a quantum phase transition. In the phase with easy plane anisotropy, Z2 symmetry between sectors with different helicity of the electrons is broken. As a result, localization effects are suppressed and the dc transport acquires (partial) symmetry protection. This effect is similar to the protection of the edge transport in time-reversal invariant topological insulators. The phase with easy axis anisotropy corresponds to the Tomonaga-Luttinger liquid with a pronounced spin-charge separation. The slow charge density wave modes have no protection against localization.

Massive Goldstone (Higgs) mode in two-dimensional ultracold atomic lattice systems
Liu, Longxiang, Chen, Kun, Deng, Youjin, Endress, Manuel, Pollet, Lode and Prokof'ev, Nikolay
Phys. Rev. B , Volume 92(174521)
November 2015

Abstract: We discuss how to reveal the massive Goldstone mode, often referred to as the Higgs amplitude mode, near the superfluid-to-insulator quantum critical point (QCP) in a system of two-dimensional ultracold bosonic atoms in optical lattices. The spectral function of the amplitude response is obtained by analytic continuation of the kinetic energy correlation function calculated by Monte Carlo methods. Our results enable a direct comparison with the recent experiment [M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross, E. Demler, S. Kuhr, and I. Bloch, Nature (London) 487, 454 (2012)] and demonstrate a good agreement for temperature shifts induced by lattice modulation. Based on our numerical analysis, we formulate the necessary conditions in terms of homogeneity, detuning from the QCP and temperature in order to reveal the massive Goldstone resonance peak in spectral functions experimentally. We also propose to apply a local modulation at the trap center to overcome the inhomogeneous broadening caused by the parabolic trap confinement.

Prethermal Floquet Steady States and Instabilities in the Periodically Driven, Weakly Interacting Bose-Hubbard Model
Bukov, Marin, Gopalakrishnan, Sarang, Knap, Michael and Demler, Eugene
Phys. Rev. Lett. , Volume 115(205301)
November 2015

Abstract: We explore prethermal Floquet steady states and instabilities of the weakly interacting two-dimensional Bose-Hubbard model subject to periodic driving. We develop a description of the nonequilibrium dynamics, at arbitrary drive strength and frequency, using a weak-coupling conserving approximation. We establish the regimes in which conventional (zero-momentum) and unconventional [(π,π)-momentum] condensates are stable on intermediate time scales. We find that condensate stability is enhanced by increasing the drive strength, because this decreases the bandwidth of quasiparticle excitations and thus impedes resonant absorption and heating. Our results are directly relevant to a number of current experiments with ultracold bosons.

Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions
Babadi, Mehrtash, Demler, Eugene and Knap, Michael
Phys. Rev. X , Volume 5(041005)
October 2015

Abstract: We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014)].

Microscopic Characterization of Scalable Coherent Rydberg Superatoms
Zeiher, J., Schauss, P., Hild, S., Macri, T., Bloch, I. and Gross, C.
Physical Review X , Volume 5(031015)
August 2015

Abstract: Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a “superatom,” is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.

Spatially Resolved Detection of a Spin-Entanglement Wave in a Bose-Hubbard Chain
Fukuhara, T., Hild, S., Zeiher, J., Schauss, P., Bloch, I., Endres, M. and Gross, C.
Physical Review Letters , Volume 115(035302)
July 2015

Abstract: Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two lattice sites in a one-dimensional BoseHubbard chain which features both local spin- and particle-number fluctuations. Starting with an initially localized spin impurity, we observe an outwards propagating entanglement wave and show quantitatively how entanglement in the spin sector rapidly decreases with increasing particle-number fluctuations in the chain.

Symmetric minimally entangled typical thermal states
Bruognolo, Benedikt, von Delft, Jan and Weichselbaum, Andreas
Phys. Rev. B , Volume 92(115105)
June 2015

Abstract: We extend White's minimally entangled typically thermal states approach (METTS) to allow Abelian and non-Ablian symmetries to be exploited when computing finite-temperature response functions in one-dimensional (1D) quantum systems. Our approach, called SYMETTS, starts from a METTS sample of states that are not symmetry eigenstates, and generates from each a symmetry eigenstate. These symmetry states are then used to calculate dynamic response functions. SYMETTS is ideally suited to determine the low-temperature spectra of 1D quantum systems with high resolution. We employ this method to study a generalized diamond chain model for the natural mineral azurite Cu3(CO3)2(OH)2, which features a plateau at 13 in the magnetization curve at low temperatures. Our calculations provide new insight into the effects of temperature on magnetization and excitation spectra in the plateau phase, which can be fully understood in terms of the microscopic model.

Crystallization in Ising quantum magnets
Schauss, P., Zeiher, J., Fukuhara, T., Hild, S., Cheneau, M., Macri, T., Pohl, T., Bloch, I. and Gross, C.
Science , Volume 347(6229), page: 1455-1458
March 2015

Abstract: Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. For quantum magnets, Ising models with power-law interactions are among the most elementary systems that support such phases. These models can be implemented by laser coupling ensembles of ultracold atoms to Rydberg states. Here, we report on the experimental preparation of crystalline ground states of such spin systems. We observe a magnetization staircase as a function of the system size and show directly the emergence of crystalline states with vanishing susceptibility. Our results demonstrate the precise control of Rydberg many-body systems and may enable future studies of phase transitions and quantum correlations in interacting quantum magnets.

Quantum State Engineering with Circuit Electromechanical Three-Body Interactions
Abdi, Mehdi, Pernpeintner, Matthias, Gross, Rudolf, Huebl, Hans and J. Hartmann, Michael
Phys. Rev. Lett. , Volume 114, page: 173602
2015

Abstract: We propose a hybrid system with quantum mechanical three-body interactions between photons, phonons, and qubit excitations. These interactions take place in a circuit quantum electrodynamical architecture with a superconducting microwave resonator coupled to a transmon qubit whose shunt capacitance is free to mechanically oscillate. We show that this system design features a three-mode polariton--mechanical mode and a nonlinear transmon--mechanical mode interaction in the strong coupling regime. Together with the strong resonator--transmon interaction, these properties provide intriguing opportunities for manipulations of this hybrid quantum system. We show, in particular, the feasibility of cooling the mechanical motion down to its ground state and preparing various nonclassical states including mechanical Fock and cat states and hybrid tripartite entangled states.

Quantum dynamics of propagating photons with strong interactions: a generalized input-output formalism
Caneva, Tommaso, T. Manzoni, Marco, Shi, Tao, S. Douglas, James, Ignacio Cirac, J. and E. Chang, Darrick
2015

Abstract: There has been rapid development of systems that yield strong interactions between freely propagating photons in one dimension via controlled coupling to quantum emitters. This raises interesting possibilities such as quantum information processing with photons or quantum many-body states of light, but treating such systems generally remains a difficult task theoretically. Here, we describe a novel technique in which the dynamics and correlations of a few photons can be exactly calculated, based upon knowledge of the initial photonic state and the solution of the reduced effective dynamics of the quantum emitters alone. We show that this generalized "input-output" formalism allows for a straightforward numerical implementation regardless of system details, such as emitter positions, external driving, and level structure. As a specific example, we apply our technique to show how atomic systems with infinite-range interactions and under conditions of electromagnetically induced transparency enable the selective transmission of correlated multi-photon states.

Undecidability of the Spectral Gap (short version)
Cubitt, Toby, Perez-Garcia, David and M. Wolf, Michael
2015

Abstract: The spectral gap -- the difference in energy between the ground state and the first excited state -- is one of the most important properties of a quantum many-body system. Quantum phase transitions occur when the spectral gap vanishes and the system becomes critical. Much of physics is concerned with understanding the phase diagrams of quantum systems, and some of the most challenging and long-standing open problems in theoretical physics concern the spectral gap, such as the Haldane conjecture that the Heisenberg chain is gapped for integer spin, proving existence of a gapped topological spin liquid phase, or the Yang-Mills gap conjecture (one of the Millennium Prize problems). These problems are all particular cases of the general spectral gap problem: Given a quantum many-body Hamiltonian, is the system it describes gapped or gapless? Here we show that this problem is undecidable, in the same sense as the Halting Problem was proven to be undecidable by Turing. A consequence of this is that the spectral gap of certain quantum many-body Hamiltonians is not determined by the axioms of mathematics, much as Goedels incompleteness theorem implies that certain theorems are mathematically unprovable. We extend these results to prove undecidability of other low temperature properties, such as correlation functions. The proof hinges on simple quantum many-body models that exhibit highly unusual physics in the thermodynamic limit.

Page:  
Previous | 1, 2, 3, 4, 5, 6, ... , 9 | Next
Export as:
BibTeX, XML

News on publications

29.04.2017

Physicists create quantum system, which is robust to mixing by periodic forces

16.01.2017

A new method to characterize the valley index of transition metal dichalcogenides

01.11.2016

Quasiparticles in time-lapse

16.04.2015

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with...

27.03.2015

The surface of topological insulators conducts electricity exceptionally well....

26.03.2015

Scientists from the MPQ, LMU, and the FUB analyse how fast order can appear in a quantum-mechanical...